In this aerial image, the steel frame of the Francis Scott Key Bridge sits on top of a container ship after the bridge collapsed in Baltimore on March 26, 2024.
The cargo ship collision that destroyed the Francis Scott Key Bridge in Baltimore on March 26, 2024, is raising questions about just how much engineers can do to prevent such catastrophes from occurring in the future. Here, Michael J. Chajes, a professor of civil and environmental engineering at the University of Delaware, discusses how bridge design codes have changed over the years and the challenges of building new structures, and retrofitting existing ones, so they can survive extreme events
How hard is it to design a bridge to withstand the force that took down the Francis Scott Key Bridge?
Once engineers understand the forces that a structure will be subjected to,,, they can design a structure to withstand them. That said, we know that each force has a range of magnitudes that can occur. For example, not all trucks on the roadways weigh the same amount, not all earthquakes are of the same magnitude, and not all ships have the same weight. We incorporate this variability in forces into the design.
Even if built to a given set of plans, the final strength of the structure can vary. The materials used have variations in strength. For example, concrete delivered on two successive days will have a sightly different final strength. This variability in the strength of the final structure is also taken into account in the design process to ensure the bridge or building is safe. There’s no way we could build two bridges from the same set of plans and they end up with the exact same strength.
Based on the weight and speed of the ship that hit the Francis Scott Key Bridge, today’s U.S. bridge design code would call for the bridge to be designed to resist a lateral force of 11,500 tons. This means the bridge has the ability to withstand a lateral hit of that magnitude. That is equivalent to the weight of about 50 loaded Boeing 777s or the weight of the Eiffel Tower. While this is a very large lateral force, structures can be designed to resist such forces. Tall buildings are routinely designed to resist lateral loads of this magnitude that result from wind or earthquakes. However, it is a matter of how much one wants to spend on the structure, and many design goals and constraints need to be balanced against each other.
What do engineers do to ensure safety in extreme events?
Our knowledge of how extreme events affect structures is constantly evolving. One area where this is very apparent is earthquake engineering. After each earthquake, structural engineers learn what has worked and what has not worked, and then the building and bridge design codes evolve. Infrastructure owners also try to retrofit existing structures that were designed to earlier codes.
Ship collisions and their impact on bridges are a similar area of evolving understanding and improved design codes. There have been over 35 major bridge collapses globally that were caused by ship collisions from 1960 to 2015. Engineers evaluate the failures, and they update the engineering codes so that they better account for the effects of ship collisions.
The cargo ship collision that destroyed the Francis Scott Key Bridge in Baltimore on March 26, 2024, is raising questions about just how much engineers can do to prevent such catastrophes from occurring in the future. Here, Michael J. Chajes, a professor of civil and environmental engineering at the University of Delaware, discusses how bridge design codes have changed over the years and the challenges of building new structures, and retrofitting existing ones, so they can survive extreme events
How hard is it to design a bridge to withstand the force that took down the Francis Scott Key Bridge?
Once engineers understand the forces that a structure will be subjected to,,, they can design a structure to withstand them. That said, we know that each force has a range of magnitudes that can occur. For example, not all trucks on the roadways weigh the same amount, not all earthquakes are of the same magnitude, and not all ships have the same weight. We incorporate this variability in forces into the design.
Even if built to a given set of plans, the final strength of the structure can vary. The materials used have variations in strength. For example, concrete delivered on two successive days will have a sightly different final strength. This variability in the strength of the final structure is also taken into account in the design process to ensure the bridge or building is safe. There’s no way we could build two bridges from the same set of plans and they end up with the exact same strength.
Based on the weight and speed of the ship that hit the Francis Scott Key Bridge, today’s U.S. bridge design code would call for the bridge to be designed to resist a lateral force of 11,500 tons. This means the bridge has the ability to withstand a lateral hit of that magnitude. That is equivalent to the weight of about 50 loaded Boeing 777s or the weight of the Eiffel Tower. While this is a very large lateral force, structures can be designed to resist such forces. Tall buildings are routinely designed to resist lateral loads of this magnitude that result from wind or earthquakes. However, it is a matter of how much one wants to spend on the structure, and many design goals and constraints need to be balanced against each other.
What do engineers do to ensure safety in extreme events?
An NCAA study on social media abuse of athletes, coaches and other officials during championship events found nearly one in five posts that were flagged by an AI-based algorithm and determined to be abusive involved sexual harassment and 12% were related to sports betting
Russia has recruited about 200 women ages 18-22 from across Africa to work in a factory alongside Russian vocational students, including teenagers, assembling thousands of Iranian-designed attack drones to be launched into Ukraine